Betulinic acid induces apoptosis in human chronic myelogenous leukemia (CML) cell line K-562 without altering the levels of Bcr-Abl.

نویسندگان

  • D V Raghuvar Gopal
  • Archana A Narkar
  • Y Badrinath
  • K P Mishra
  • D S Joshi
چکیده

Betulinic acid (BA), a plant derived triterpenoid, isolated from various sources shows cytotoxicity in cell lines of melanoma, neuroectodermal and malignant brain tumors. Chronic myelogenous leukemia (CML) is characterized by Philadelphia chromosome (Bcr-Abl), a molecular abnormality leading to the intrinsic tyrosine kinase activity that provides growth and survival advantage to the cells. Present study describes the cytotoxicity of BA on human CML cell line K-562, positive for Bcr-Abl. The decrease in the viability of K-562 cells treated with BA at different concentrations and time intervals was assessed using MTT assay. Cell death induced by BA was determined to be apoptotic as measured by FACS analysis of PI stained nuclei, PS externalization by Annexin-V fluorescence and characteristic DNA fragmentation. DiOC6(3) fluorescent probe determined alterations in the mitochondrial membrane potential (MMP). RT-PCR confirmed the expression levels of Bcr-Abl in controls and K-562 cells treated with BA. The rapid loss of MMP of K-562 cells upon treatment with BA shows the direct activation of apoptosis at the level of mitochondria, overcoming the resistance of the high levels of expression of Bcr-Abl.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chlorogenic acid inhibits Bcr-Abl tyrosine kinase and triggers p38 mitogen-activated protein kinase-dependent apoptosis in chronic myelogenous leukemic cells.

We report that chlorogenic acid (Chl) induces apoptosis of several Bcr-Abl-positive chronic myelogenous leukemia (CML) cell lines and primary cells from CML patients in vitro and destroys Bcr-Abl-positive K562 cells in vivo. In contrast, this compound has no effect on the growth and viability of Bcr-Abl-negative lymphocytic and myeloid cell lines and primary CML cells. Sodium chlorogenate (NaCh...

متن کامل

MUC1 oncoprotein regulates Bcr-Abl stability and pathogenesis in chronic myelogenous leukemia cells.

Chronic myelogenous leukemia (CML) results from expression of the Bcr-Abl fusion protein in hematopoietic stem cells. The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas. The present studies show that MUC1 is expressed in the human K562 and KU812 CML cell lines. The results show that MUC1 associates with Bcr-Abl through a direct interaction between the Bcr N-t...

متن کامل

Activation of a novel Bcr/Abl destruction pathway by WP1130 induces apoptosis of chronic myelogenous leukemia cells.

Imatinib mesylate (Gleevec) is effective therapy against Philadelphia chromosome-positive leukemia, but resistance develops in all phases of the disease. Bcr/Abl point mutations and other alterations reduce the kinase inhibitory activity of imatinib mesylate; thus, agents that target Bcr/Abl through unique mechanisms may be needed. Here we describe the activity of WP1130, a small molecule that ...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

Triptolide induces cell death independent of cellular responses to imatinib in blast crisis chronic myelogenous leukemia cells including quiescent CD34+ primitive progenitor cells.

The advent of Bcr-Abl tyrosine kinase inhibitors (TKI) has revolutionized the treatment of chronic myelogenous leukemia (CML). However, resistance evolves due to BCR-ABL mutations and other mechanisms. Furthermore, patients with blast crisis CML are less responsive and quiescent CML stem cells are insensitive to these inhibitors. We found that triptolide, a diterpenoid, at nanomolar concentrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicology letters

دوره 155 3  شماره 

صفحات  -

تاریخ انتشار 2005